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Surface tension of compound forming liquid binary alloys:

A simple model

I . EGRY
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Surface tension γ of binary liquid alloys has been a
subject of numerous publications, with the main em-
phasis on the role of surface active components. This is
the component with the lowest surface tension, which
tends to segregate at the surface thereby lowering the
total energy of the system. Using Butler’s equation [1],
the surface tension of alloys can be derived from the
surface tension of the pure elements and bulk ther-
modynamic data of the alloys [2, 3]. In practice, the
latter are not always available and one is forced to
use models that do not require such inputs, e.g., the
ideal solution model [4]. This model predicts surface
segregation qualitatively and correctly. Unfortunately,
it can only be applied to relatively simple systems
with weak interactions. In particular, the ideal solution
model cannot explain surface depletion of the surface
active species, often observed in systems forming in-
termetallic compounds in the solid phase. This effect
can be understood by assuming that clusters of the in-
termetallic composition prevail in the liquid phase too.
The success of thermodynamic association models [5],
which are based on the existence of such clusters, sup-
ports this hypothesis. If these clusters exist, they bind
the otherwise surface active component, preventing it
from segregating at the surface. Consequently, there is
a competition between surface segregation and cluster
formation, which is controlled by entropy and energy
considerations.

In the following we consider a binary alloy A–B,
which shows one intermetallic phase in the solid state,
of the form An Bm. We start by writing the surface ten-
sion γ of A–B as:

γ = cs
AγA + cs

BγB (1)

where γA, γB are the surface tensions of the two com-
ponents, and cs

A, cs
B are the surface concentrations of

the two components. In this equation, two assumptions
have clearly been made: (i) It is assumed that equal
amounts of the two species A and B create equally
large surface areas i.e., the influence of different molar
volumes is neglected, and (ii) it is assumed that each
atom of a given species contributes the same amount to
the surface tension, regardless of its local environment.
In other words, the energy of a broken bond of a surface
atom is independent of the local structure. Of course,
both effects would have to be included in a rigorous
theory, but for the sake of simplicity, they are neglected
here.

For the surface concentrations the ideal solution
model gives:

cs
A = cA

cA + cB/S0
, cs

B = cB

cB + cAS0
(2)

where cA, cB are the bulk concentrations of components
A and B, and S0 is the surface segregation factor given
by:

S0 = e
A(γB−γA)

RT (3)

A is the molar surface area [6]: A = 1.09 v2/3 N 1/3
A .

NA = 6 × 1023 (mol)−1 is Avogadro’s constant and R
is the gas constant: R = 8.3 (Nm/mol K). In the deriva-
tion of Equation 2 it has been assumed, as discussed
above, that the molar volumes of both components are
identical, vA = vB = v. In practice, v is the effective
molar volume and is used as a fitting parameter.

In the following we assume component A to be sur-
face active, i.e., γA < γB and S0 > 1. The surface seg-
regation factor is the ratio between the energy gained
by surface segregation and the thermal energy. The idea
is to modify this factor by taking into account the fact
that some of the surface active atoms may be bound in
clusters. For these, the energy gain by surface segrega-
tion must be reduced by the energy required to break a
cluster of the form An Bm. Consequently, we replace S0
by SAB:

SAB = e
A(γB−γA)−f(n+m)cn

Acm
B

RT . (4)

here f represents the molar binding energy of the clus-
ter. The factor (n + m) ensures that f remains inde-
pendent of cluster size. The factor cn

Acm
B describes the

probability for such a cluster. The maximum probabil-
ity occurs at:

cmax
A = n

n + m
. (5)

This means that the deviation from ideal behavior is
largest at the concentration of the intermetallic phase.

Inserting Equation 4 into Equation 2, and Equation 2
into Equation 1, we finally obtain our model:

γ = γAcA

cA + cBe− A(γB−γA)− f (n+m)cn
Acm

B
RT

+ γBcB

cB + cAe
A(γB−γA)− f (n+m)cn

Acm
B

RT

. (6)
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Figure 1 The surface tension of a hypothetical binary alloy as the func-
tion of concentration. The dotted line corresponds to the ideal solution
model, the full lines represent the present model, assuming compounds
of the form A1B3, AB, A3B1, respectively. The model parameters are
the same for all 3 curves.

In order to get a feeling of the behavior of the model
we have plotted, Equation 6 in Fig. 1 for three different
cases: A3B1, AB, and A1B3, as a function of concentra-
tion cB. We have chosen γA = 1, γB = 2, AγA/RT =
1 f/RT = 5 for all three cases. For comparison, the
ideal solution model ( f = 0) is also shown. Surface
tension values below the diagonal, cAγA + cBγB, cor-
respond to surface segregation, values above it result
from surface depletion of component A. The ideal solu-
tion model predicts surface segregation for all concen-
trations, whereas the present model is indeed capable
of describing surface depletion near the intermetallic
composition.

To check the model against a real system, we have
chosen Ni-Al, where experimental data are available
[7, 8]. The system Ni-Al displays several intermetal-
lic phases in the solid [9], and one has to make a
choice of which one is to be modeled, which is obvi-
ously, the one with the highest binding energy i.e., with
the highest liquidus temperature in the phase diagram.
In the case of the Ni-Al system, this is NiAl. Fig. 2
shows both, the experimental data, and our fit using
Equation 6. The fit was performed using the Levenberg–
Marquardt algorithm and resulted in following values of
the fit parameters: γAl = 0.738 N/m, γNi = 1.725 N/m,
γAl A/RT = 1.268, f/RT = 5.334.

In summary, the proposed model helps to understand
the effect of compound formation on the surface ten-

Figure 2 The surface tension of the Ni-Al system at 1640 ◦C. Squares
are data from Eremenko [7], triangles are data from Ayushina [8], the
full line is a fit with the present model, assuming NiAl clusters.

sion of a liquid alloy. It fits existing data surprisingly
well.
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